Сторінка
34

Особливості вивчення математики в профільних класах у сучасних умовах

грецькі

точки

аксіоми планіметрії

І-ІХ

пряма, що проходить через цю точку

одна

паралелограм

стереометрія

точка, пряма, площина

можна

існують

площина

Клас поділяється на команди – дилери великого виробничого підприємства, фундатором якого є вчитель. У кожній команді призначається директор (капітан команди), розподіляються обов’язки головного бухгалтера, менеджера з реклами тощо.

– Зараз ми викликаємо директорів представництв та головних бухгалтерів на семінар-тренінг. Тут вони мають виконати завдання, які перевірять їх кваліфікацію. Найкращі повезуть до своїх філіалів великі премії (додаткові бали чи оцінки).

Одночасно для трьох капітанів пропонуються малюнки до аксіом. Завдання полягає в тому, щоб встановити, до якої аксіоми є ілюстрацією запропонований малюнок, помітити, який елемент там відсутній. Цей елемент необхідно домалювати, а потім сформулювати відповідну аксіому.

Завдання для першої команди

1) 2) 3)

Завдання для другої команди

1) 2) 3)

Завдання для третьої команди

1) 2) 3)

IV. Теоретичні завдання

Кожна команда отримує картки, на яких пропонується доведення одного з наслідків чи теоретичний матеріал про многогранники. Учні вивчають завдання, після чого один з учнів доповідає за допомогою вчителя та інших членів команди біля дошки.

– А зараз наше виробниче підприємство надасть своїм дилерам завдання провести презентацію нового продукту. Ви маєте його розглянути, а менеджери з питань реклами його представлять. Ті, хто найкраще це зробить, переможуть у грі.

Картка № 1

Теорема. Через пряму і точку, що належить даній прямій, можна провести площину, і притому тільки одну.

Дано: пряма АВ, точка С АВ.

Довести: 1) існує {АВ, С};

2) єдина.

Доведення

1) Проведемо пряму АС (аксіома І). АС і АВ різні, оскільки С АВ. За аксіомою С3: АВ і АС визначають площину .

2) Доведемо єдиність (методом від супротивного).

Нехай існує ще одна площина , що проходить через АВ і точку С. За аксіомою С2: точки А, В і С повинні лежати на одній прямій. Це суперечить умові, що С АВ. Припущення не вірне.

Теорему доведено.

Картка № 2

Теорема. Через три точки, що не лежать на одній прямій, можна провести площину, і притому тільки одну.

Дано: а.

Довести: 1) існує ;

2) – єдина.

Доведення.

1) Проведемо прямі АВ і АС, вони різні, оскільки а. За аксіомою С3: через прямі АВ і АС можна провести площину .

2) Доведемо єдиність.

За теоремою 2 (якщо дві точки прямої належать площині, то вся пряма належить цій площині): . За аксіомою С3 така площина єдина.

Теорему доведено.

Картка № 3

Теорема. Якщо дві точки прямої належать площині, то вся пряма належить цій площині.

А |

.

В |

Опорна задача. Якщо дві площини мають дві спільні точки, то вони перетинаються по прямій, що містить ці точки.

Наслідок. Пряма і площина

не перетинаються

(немає спільних точок) перетинаються

(мають одну спільну точку)

(принаймні дві

спільні точки)

Розглянуті способи задання площини часто використовують під час побудови перерізів многогранників. Найпростішими з многогранників є куб, паралелепіпед (усі грані – паралелограми), тетраедр або трикутна піраміда (усі грані – трикутники). Якщо всі грані паралелепіпеда – прямо­кутники, його називають прямокутним паралелепіпедом. Якщо всі ребра тетраедра рівні, його називають правильним тетраедром.

Перейти на сторінку номер:
 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 
 31  32  33  34  35  36  37  38  39  40  41 


Інші реферати на тему «Математика»: