Сторінка
2
Виберемо довільним чином в кожній частині точку
і тоді маса тіла
(по аналогії із об’ємом циліндричного тіла) дорівнює
|
|
(11.4)
Знову ж таки на вираз (11.4) можна дивитися як на певну операцію над функцією
, що задана в трьохвимірному просторі
.
Ця операція на цей раз називається операцією потрійного інтегрування (за Ріманом 1)), а її результат – визначеним потрійним інтегралом, що позначається так:
Отже,
![]()
(11.5)
До знаходження таких границь приводять не тільки задачі про визначення об’єму циліндричного тіла і знаходження маси, але й інші задачі.
Нижче ми побачимо, що частина теорії кратного інтегрування, зокрема, теореми існування і теореми про аддитивні властивості інтеграла, може бути викладена цілком аналогічно як в одновимірному, так і в
вимірному випадку. Проте в теорії кратних інтегралів виникають певні труднощі, яких не було в теорії звичайного означеного інтеграла.
Справа в тому, що однократний інтеграл Рімана 1) ми визначали для дуже простої множини – відрізку
який дробився знову на відрізки. Ніяких труднощів у визначенні довжини (одновимірної міри) відрізків не виникало. Проте у випадку подвійних, потрійних і, взагалі,
кратних інтегралів область інтегрування доводиться ділити (лініями, поверхнями, гіперповерхнями) на частини з криволінійними границями, і виникає питання визначення поняття площі, об’єму або взагалі
вимірної міри цих частин.
1) Б. Ріман (1826-1866) – німецький математик.
Поняття про міру Жордана 1). В двохвимірному випадку ми будемо мати справу з обмеженими областями, що мають гладку границю (рис. 11.2) або кусково-гладку границю, що складається із кінцевого числа гладких кусків (ліній). Ці області в свою чергу доводиться ділити на частини, що мають кусково-гладку границю. Кожній такій області
і деяким іншим множинам можна привести у відповідність додатне число
яке називається площею або двохвимірною мірою Жордана . При цьому виконуються такі властивості:
1) якщо
прямокутник з основою
і висотою
то
2) якщо
і
мають міри
то
3) якщо область
розрізана за допомогою кусково-гладкої кривої на дві частини
і
то
Існують множини двохвимірної міри, що дорівнюють нулю, такі, як точка, відрізок, гладка або кусково-гладка крива.
В трьохвимірному випадку нас будуть цікавити області, що мають своєю границею кусково-гладкі поверхні. Куля, еліпсоїд, куб можуть служити прикладом таких поверхонь.
Поверхня називається гладкою, якщо в довільній її точці
можна провести дотичну площину, що неперервно змінюється разом з цією точкою. Поверхня називається кусково-гладкою, якщо її можна
розрізати на кінцеве число гладких кусків. По лінії розрізів дотичні площини можуть і не існувати.
Для трьохвимірних обмежених областей
з кусково-гладкими границями можна визначити їх об’єм (трьохвимірну міру), тобто додатне число
, що задовольняє таким властивостям:
1) якщо
прямокутний паралелепіпед з ребрами
то
2) якщо
і
мають міри
то
3) якщо область
розрізана за допомогою кусково-гладкої поверхні на дві частини
і
то
1) К. Жордан (1838-1922) – французький математик
Є множини трьохвимірної міри, що дорівнює нулю. Такими є точка, відрізок, плоский прямокутник, гладка або кусково-гладка поверхня.
Означення. Дамо тепер визначення кратного інтеграла, не розглядаючи задачі геометричного або фізичного змісту.
Нехай в
вимірному просторі
задана обмежена область
з кусково-гладкою границею
і на
(або на
) задана функція
Розріжемо
довільним чином на частини
, що перетинаються хіба що по своїх границях, які будемо вважати кусково-гладкими. Виберемо в кожній частині
по довільній точці
і складемо суму
Інші реферати на тему «Математика»:
Задачі геометричного і фізичного характеру, що приводять до диференціальних рівнянь
Системи лінійних диференціальних рівнянь. Загальні положення
Метод виділення лінійних множників
Числові ряди. Збіжність і розбіжність. Сума ряду. Дії над збіжними рядами
Існування та єдиність розв’язків диференціальних рівнянь першого порядку. Неперервна залежність та диференційованість
