Сторінка
1

Властивості степеневих рядів. Неперервність суми. Інтегрування і диференціювання степеневих рядів

План

  • Властивості степеневих рядів
  • Неперервність суми
  • Інтегрування степеневих рядів
  • Диференціювання степеневих рядів

1. Властивості степеневих рядів

Теорема 1 (неперервність суми степеневого ряду). Сума степеневого ряду (13.39) є неперервною всередині проміжку збіжності.

Д о в е д е н н я. Візьмемо деяке додатне Тоді числовий ряд з додатними членами

(13.49)

збігається. Але при члени ряду (13.39) за абсолютною величиною не більші відповідних членів ряду (13.49). Тому, за ознакою Вейєрштрасса, ряд (13.39) рівномірно збігається на відрізку і його сума буде неперервною на цьому відрізку.

Наслідок. Якщо границі інтегрування , лежать всередині інтервалу збіжності степеневого ряду , то за теоремою 3 (п.13.9.3) його можна почленно інтегрувати на проміжку , оскільки він буде рівномірно збігатися на , що містить проміжок ().

Теорема 2 (диференціювання степеневих рядів). Якщо степеневий ряд (13.39)

має інтервал збіжності , то ряд

(13.50)

одержаний почленним диференціюванням ряду (13.39), має той же інтервал збіжності ; при цьому сума ряду (13.50) де сума ряду (13.39).

Д о в е д е н н я. Доведемо, що ряд (13.50) рівномірно збігається на відрізку який повністю лежить всередині інтервалу збіжності.

Для цього візьмемо деяку точку таку, що В цій точці ряд (13.39) збігається, значить а тому можна вказати таке постійне число що . Якщо то

де

Таким чином, члени ряду (13.50) при за абсолютною величиною менші за члени числового ряду з додатними членами:

За ознакою Даламбера цей ряд збігається:

Отже, ряд (13.50) рівномірно збігається на відрізку і за теоремою 4 (п.13.9.3) його сума є похідна від суми даного ряду на відрізку , тобто

Оскільки довільну внутрішню точку інтервалу можна помістити в деякий відрізок то звідси випливає, що ряд (13.50) збігається в довільній внутрішній точці інтервалу

Доведемо тепер, що ряд (13.50) розбігається поза інтервалом Припустимо, що ряд (13.50) збігається при деякому Інтегруючи його почленно в інтервалі де ми одержали б, що ряд (13.39) збігається в точці а це протирічить умовам теореми. Таким чином, інтервал є інтервал збіжності ряду (13.50). Теорема повністю доведена.

Ряд (13.50) знову можна почленно диференціювати і продовжити так як завгодно багато разів. Отже, одержимо висновок:

Перейти на сторінку номер:
 1  2 


Інші реферати на тему «Математика»: