Сторінка
3
Нехай маємо складну функцію
, де функції
і
мають похідні за своїми аргументами до другого порядку включно. Тоді
має диференціал
,
де
- похідна за аргументом
, а
.
Знайдемо
. Згідно з означенням
.
Оскільки диференціал першого порядку має інваріантну властивість, то
Остаточно дістанемо таку рівність:
. (6.70)
Порівнюючи формули (6.75) та (6.77), виводимо, що формула диференціала другого порядку змінюється. У формулі (6.70) є новий доданок
, який у випадку
не дорівнює нулю.
Якщо функція задана параметрично
то її друга похідна обчислюється за формулою
(6.71)
Інші реферати на тему «Математика»:
Графічний метод розв’язання задачі лінійного програмування. Основи аналізу моделі на чутливість
Диференціальні рівняння першого порядку (з відокремлюваними змінними, однорідні, лінійні, Бернуллі)
Послідовності випадкових величин. Граничні теореми
Теореми Ролля, Лагранжа, Коші. Правило Лопіталя. Формула Тейлора для функції однієї та двох змінних
Інтегрування раціональних функцій
