Сторінка
1

Функціональний ряд, область його збіжності. Cтепеневі ряди. Теорема Абеля

План

  • Функціональний ряд.
  • Область збіжності
  • Рівномірна збіжність
  • Степеневі ряди
  • Теорема Абеля
  • Інтервал і радіус збіжності степеневого ряду
  • Ряди за степенями

1. Функціональні ряди

1.1. Функціональні ряди. Область збіжності

Ряд

(13.22)

називається функціональним, якщо його члени є функціями від Надаючи певного числового значення, ми одержимо різні числові ряди. Одні з них можуть бути збіжними, інші – розбіжними.

Означення. Сукупність тих значень при яких ряд (13.22) збігається, називається областю збіжності функціонального ряду.

Очевидно, що в області збіжності ряду його сума є деякою функцією від . Тому його суму будемо позначати через

Через позначимо частинну суму ряду (13.22), тобто суму перших його членів

(13.23)

Тоді

, (13.24)

де

і називається залишком ряду. Для всіх значень в області збіжності ряду має місце співвідношення а тому

(13.25)

тобто залишок збіжного ряду прямує до нуля при

Приклад. Знайти область збіжності ряду .

Р о з в ‘ я з о к. Для знаходження області збіжності даного функціонального ряду використаємо радикальну ознаку Коші

. Ряд збігається при тих

значеннях при яких ця границя менша за одиницю, тобто

Дослідимо збіжність ряду на кінцях проміжку, тобто при і .

При : ряд розбігається.

При : ряд розбігається.

Областю збіжності даного ряду є проміжок

1.2. Рівномірна збіжність

Означення. Функціональний ряд (13.22), збіжний для всіх із області , називається рівномірно збіжним в цій області, якщо для довільного як завгодно малого числа існує такий незалежний від номер що при нерівність

або (13.26)

виконується одночасно для всіх із

Приклад 1. Розглянемо прогресію

вона збігається в відкритому проміжку Для довільного із залишок ряду має вигляд:

Якщо довільно зафіксувати, то, очевидно:

Це показує, що здійснити для всіх одночасно нерівність

Перейти на сторінку номер:
 1  2  3  4 


Інші реферати на тему «Математика»: