Сторінка
2

Лінійні диференціальні рівняння другого порядку з постійними коефіцієнтами

Дане рівняння є частинним випадком диференціального рівняння (12.48), у якому а - многочлен першого степеня вигляду: Оскільки є однократним коренем характеристичного рівняння частинний розв’язок диференціального рівняння шукатимемо у формі (12.50)

абоде - невизначені сталі. Диференціюючи двічі , маємо

Підставляючи в дане рівняння , маємо або Прирівнюючи вирази при однакових степенях зліва й справа в одержаній рівності отримуємо систему

Отже, частинний розв’язок :

Загальний розв’язок:

Зауваження 1. Якби справа в рівнянні прикладу 3 стояв, наприклад, вираз то, переконавшись, що не збігається з коренями характеристичного рівняння відповідного однорідного рівняння, шукали б розв’язок у формі

Зауваження 2. Якби зліва в рівнянні прикладу 3 стояв вираз , то відповідне характеристичне рівняння мало б кратні корені: В цьому разі а розв’язок шукали б у формі

2. Розглянемо диференціальне рівняння загального вигляду

У цьому разі форма частинного розв’язку істотно залежить від того, збігається чи ні комплексне число з коренями характеристичного рівняння (12.39).

а). Нехай число не є коренем характеристичного рівняння: Тоді частинний розв’язок шукають у вигляді

(12.52)

де і - многочлени з невизначеними коефіцієнтами одного і того самого степеня, що дорівнює найбільшому степеню многочленів та .

б). Якщо число є коренем характеристичного рівняння, то частинний розв’язок має вигляд

(12.53)

Зауваження 3. Навіть якщо функція (12.47) є “неповним” виразом вигляду або , частинні розв’язки (12.52) та (12.53) залишаються незмінними.

Важливим частинним випадком функції (12.47) є функція вигляду

де і - сталі числа. При цьому

Перейти на сторінку номер:
 1  2  3  4 


Інші реферати на тему «Математика»: