Сторінка
2
Нехай маємо систему
і
- загальний розв’язок однорідної системи. Розв’язок неоднорідної будемо шукати в такому ж вигляді, але вважати
не сталими, а невідомими функціями, тобто
і
,чи в матричній формі
,
де
-фундаментальна матриця розв’язків,
- вектор з невідомих функцій. Підставивши в систему, одержимо
,
чи
.
Оскільки
- фундаментальна матриця, тобто матриця складена з розв’язків, то
.
і залишається система рівнянь
.
Розписавши покоординатно, одержимо
Оскільки визначником системи є визначник Вронського і він не дорівнює нулю, то система має єдиний розв’язок і функції
визначаються в такий спосіб
Звідси частинний розв’язок неоднорідної системи має вигляд
.
Для лінійної неоднорідної системи на площині
метод варіації довільної сталої реалізується таким чином.
Нехай
.
Фундаментальна матриця розв’язків однорідної системи. Тоді частинний розв’язок неоднорідної шукається у вигляді
Звідси

І загальний розв’язок має вигляд
,
,
де
- довільні сталі.
4. Метод невизначених коефіцієнтів
Якщо система лінійних диференціальних рівнянь з сталими коефіцієнтами, а векторна функція
спеціального виду, то частинний розв’язок можна знайти методом невизначених коефіцієнтів. Доведення існування частинного розв’язку зазначеного виду аналогічно доведенню для лінійних рівнянь вищих порядків.
1) Нехай кожна з компонент вектора
є многочленом степеня не більш ніж
, тобто
.
а) Якщо характеристичне рівняння не має нульового кореня, тобто
,
, то частинний розв’язок шукається в такому ж вигляді, тобто
.
б) Якщо характеристичне рівняння має нульовий корінь кратності
, тобто
, те частинний розв’язок шукається у вигляді многочлена степеня
, тобто
.
Причому перші
- коефіцієнти
,
,
знаходяться точно, а інші з точністю до сталих інтегрування
, що входять у загальний розв’язок однорідних систем.
2) Нехай
має вид
.
а) Якщо характеристичне рівняння не має коренем значення
, тобто
,
, то частинний розв’язок шукається в такому ж вигляді, тобто
.
б) Якщо
є коренем характеристичного рівняння кратності
, тобто
, то частинний розв’язок шукається у вигляді
Інші реферати на тему «Математика»:
Синтез систем по оптимізації їх керованості
Діаграма Вороного
Системи лінійних диференціальних рівнянь. Загальні положення
Розклад функцій в степеневий ряд. Достатні умовирозкладу в ряд Тейлора. Застосування степеневих рядів до наближеного обчислення
Інтегрування раціональних дробів та виразів, що містять ірраціональності
