Сторінка
2
Кут
водночас є кутом між віссю
і перпендикуляром до площини (11.26). Тому на основі рівняння (11.26) і формули аналітичної геометрії маємо:
.
Тоді
.
Підставляючи цей вираз у формулу (11.27), дістанемо (зауваживши при цьому, що при
):
.
Границя, яка стоїть у правій частині за означенням є подвійним інтегралом, тобто
. (11.28)
Це і є формула, за якою обчислюється площа поверхні
.
Якщо рівняння поверхні задано у вигляді
або
, то відповідні формули для обчислення площі поверхні матимуть вигляд
,
,
де
- області відповідно на площинах
і
, в які проектується ця поверхня.
|
|
Рис.11.15
що вирізається циліндром
Р о з в ‘ я з о к. Дана поверхня – параболоїд (рис.11.15). Обчислимо частинні похідні:
Область інтегрування
круг з радіусом, що дорівнює 1. Тоді за формулою (11.28) маємо, перейшовши в подвійному інтегралі до полярних координат:
1 2
Інші реферати на тему «Математика»:
Системи лінійних однорідних диференціальних рівнянь з сталими коефіцієнтами
Комплексні числа, їх зображення на площині. Алгебраїчна, тригонометрична і показникова форми комплексного числа
Диференціальні рівняння вищих порядків
Достатні ознаки збіжності рядів з додатніми членами: ознаки порівняння, Даламбера, радикальна та інтегральна ознаки Коші
Інтегрування раціональних функцій
