Сторінка
1

Реактивний рух

Протягом багатьох століть людство мріяло про космічні подорожі. Письменники-фантасти пропонували самі різні засоби для досягнення цєї мети. В XVII столітті з’явилось оповідання французького письменника Сірано де Бержерака про подорож на Місяць. Герой цього оповідання дістався до Місяця в металевому візку, над яким він весь час підкидав сильный магніт. Притягуючись до нього, візок все вище підіймався над Землею, доки не досягнув Місяця. Тоді як ба­рон Мюнхгаузен Г.А.Бюргера розповідав, що виліз на Місяць по стеблині боба.

Мал. 1 К.Е. Ціолковський

Але ні один вчений, ні один письменник-фантаст за багато століть не зміг назвати єдиного розташованого у розпорядженні людини засобу, за допомогою якого можна подолати силу земного ­тяжіння і полетіти в космос. Це зміг здійснити російський вчений Констянтин Едуардович Ціолковський (1857-1935)(мал.1). Він показав, що єдиний апарат, спроможний подолати силу тяжіння - це ракета, тобто. апарат з реактивним двигуном, використовуючим пальне і окислювач, розташовані на самому апа­раті.

Реактивний двигун – це двигун, перетворюючий хімічну енергію палива в кінетичну енергію газової струї, при цьому двигун набирає швидкість у зворотньому напрямку. На яких прин­ципах и фізичних законах основується його дія?

Кожен знає, що постріл із гвинтівки супроводжується віддачею. Якщо б вага кулі дорівнювала б вазі гвинтівки, вони б розлетілись з однаковою швидкістю. Віддача виникає тому, що відкидна маса газів створює реактивну силу, завдяки якій може бути забезпечено рух як у повітрі, так і в безповітряному просторі. І чим більша маса і швидкість вилітаючих газів, тим більшу силу віддачі відчуває наше плече, чим сильніша реакція гвинтівки, тим більша реактивна сила. Це легко пояснити із закону збереження імпульсу, в якому йдеться, що геометрична (тобто векторна) сума імпульсів тіл, складаючих зам­кнуту систему, залишається постійною при любих рухах і взаємодіях тіл системи, тобто:

К. Е. Ціолковський вивів формулу, дозволяючу розрахувати максимальну швидкість, яку може розвинути ракета. Ось ця формула:

Тут vmax – максимальна швидкість ракети, v0 – початкова швидкість, vr – швидкість вильоту газів із сопла, m – початкова маса палива, а M – маса порожньої ракети. Як видно із формули, ця максимально досяжна швидкість залежить в першу чергу від швидкості вильоту газів із сопла, яка в свою чергу залежить перед усім від виду палива і температури газової струї. Чим вища температура, тим більша швидкість. Значить, для ракети потрібно підбирати саме калорійне паливо, яке надає найбільшу кількість теплоти. Із формули витікає також, що ця швидкість залежить і від початкової і кінечної маси ракети, тобто від того, яка частина її ваги при­ходиться на пальне, і яка - на безкорисні (з точки зору швидкості польоту) конструкції: корпус, механізми, і т.п.

Ця формула Ціолковського являється фундаментом, на якому будується весь розрахунок сучасних ракет. Відношення маси палива до маси ракети в кінці роботи двигуна (тобто по правді до ваги пустої ракети) називається числом Ціолковського.

Основний висновок із цієї формули полягає в тому, що в безповітряному просторі ракета розвине тим більшу швидкість, чим більша швидкість витоку газів і чим більше число Ціолковського.

Як виглядає в загальних рисах сучасна ракета далекої дії? Перед усім, це багатоступінчата ракета. В головній її частині розміщується боєвий заряд, позад нього ‑ прилади керування, баки і, нарешті, двигун. В залежності від пального стартова вага ракети перевищуєт вагу корисного вантажу в 100-200 разів! Тому важить вона багато десятків тонн, а в довжину досягає висоти десятиповерхового будинку. Мал.2 Схема внутрішньої будови ракети.

Конструкція ракети повинна відповідати ряду вимог. Наприклад, дуже важливо, щоб сила тяги проходила через центр ваги ракети. Якщо не виконати цього і ще багатьох інших вимог, то ракета може відхилитися від заданого курсу або навіть почати обертальний рух. «Підправити» курс можна за допомогою рулів. Доки ракета летить у щільному повітрі, можуть працювати аеродинамічні рулі, а у розрідженому повітрі – запропоновані ще Ціолковським газові рулі, відхиляючі напрям газової струї. Хоча, зараз конструктори починають відмовлятися від використання газових рулів, замінюючи їх декількома додатковими соплами або повертаючи головне сопло. Наприклад, на американській ракеті, побудованій по проекту «Авангард», двигун підвішаний на шарнірах, і його можливо відхиляти на 5-7О. Дійсно, на початку польоту, коли щільність повітря ще велика і швидкість ракети маленька, рулі погано керують. А там, де ракета набирає більшу швидкість, мала густина повітря. Газові рулі крихкі і ламкі, тому що їх доводиться робити з графіту або кераміки.

Кожна ступінь ракети працює в зовсім різних умовах, які і вибирають її будову. Потужність кожної наступної ступені і час її дії менша від попередньої, тому її конструкція може бути простішою.

На теперішній час двигуни балістичних ракет переважно працюють на рідкому паливі. В якості палива зазвичай використовують керосин, спирт, гідразин, анілін, а в якості окислювачів - азотну и хлоридну кислоти, рідкий кисень і перекись водню. Дуже активними окислювачами є фтор і рідкий озон, але через велику вибухонебезпечність вони поки що обмежені в використанні.

Найбільш відповідальною частиною ракети являється двигун, а в ньому – камера згорання і сопло. Тут повинні використовуватися особливо жаростійкі матеріали і складні методи охолодження, так як температура згоряння палива доходить до 2500-3500ОС. Звичайні матеріали таких температур не витримують. Достатньо складні і інші агрегати. Наприклад, насоси, які подавали пальне і окислювач до форсунок камери згорання, вже в ракеті ФАУ-2 були здатні перекачувати 125 кг палива в секунду. В ряді випадків замість балонів застосовують балони із зжатим повітрям або яким-небудь другим газом, який витісняє пальне із баків і гонить його в камеру згорання.

Перейти на сторінку номер:
 1  2 


Інші реферати на тему «Фізика»: